
A Recoverable Annular Network with

Unrecoverable Dual

David Jekel

August 18, 2013

Recovering the Network

For definitions, see [1]. I consider the network Γ shown in Figure 1 and its
dual Γ† shown in Figure 3. I show that Γ is recoverable, while for Γ†, the
inverse problem has a two-parameter family of solutions.

To recover Γ, we use the boundary value problem shown in Figure 2.
We first determine the conductance of the spike γ(5, 13). By a symmetrical
argument, we can recover the other spikes. Then the same boundary value
problem allows us to determine γ(4, 13). Knowing the current on 4 → 13
and net current on 4, we can determine the current on 4 → 12 and hence
γ(4, 12). By symmetry, we can determine γ(1, 9), γ(3, 11), and γ(6, 14).
Then we know the voltage on 11 and 15, so we can recover γ(11, 12) and
γ(11, 15). By symmetry, we can recover all the remaining edges.

1



Figure 1: The network Γ.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

2



Figure 2: Boundary value problem to recover conductances.

(0) 0

0
(0)

0 (0)

(1)
0

−

0

++

−−−

0

0

0

−

0

0

−−

3



Figure 3: The network Γ†.

0

1

2

3

4

5

6

7

8

9

10

11

The Unrecoverable Dual

The dual graph is shown in Figure 3. For any valid response matrix, the
inverse problem has a two-parameter family of solutions in a neighborhood
of the original conductivity function.

To see this, we use the F-K transformation described in [2]. We re-
place each four-star in the network with an electrically equivalent complete
graph on four vertices. See Figure 4. The conductances on each K4 satisfy
the quadrilateral rule. Conversely, any complete graph whose conductances
satisfy the quadrilateral rule is electrically equivalent to a star.

A conductivity function γ on the original graph produces a conductivity
function on the transformed graph µ. The response matrix of the trans-

4



formed graph is easy to compute: To find λpq, simply add up the conduc-
tances of the edges from p to q. To refer to an edge which is part of a
K4, I will list three numbers. The first and last will be the vertices at the
endpoints of the edge and the middle one will be the name of the interior
vertex which is the center of the star corresponding to the K4. For instance,
the conductance of the blue edge joining 4 and 6 is µ(4, 9, 6). The boundary
edges of the original graph are shown in black and their conductances will
be called simply µ(0, 1), µ(2, 3), µ(4, 7), and µ(5, 6).

We construct a new conductivity function µxy depending on two param-
eters x and y, such that µxy satisfies the quadrilateral rule and has the same
response matrix as µ. To begin with, µxy must be the same as µ for all
singleton edges:

µxy(0, 8, 4) = µ(0, 8, 4) µxy(4, 9, 5) = µ(4, 9, 5)

µxy(1, 9, 5) = µ(1, 9, 5) µxy(6, 11, 7) = µ(6, 11, 7)

µxy(2, 10, 6) = µ(2, 10, 6) µxy(0, 8, 3) = µ(0, 8, 3)

µxy(3, 11, 7) = µ(3, 11, 7) µxy(1, 10, 2) = µ(1, 10, 2).

We do not include µ(4, 9, 6), etc., because there are two edges from 4 to
6, one above the hole and one below it. Instead, we define

µxy(4, 9, 6) = µ(4, 9, 6) + x µxy(4, 11, 6) = µ(4, 11, 6)− x,
µxy(1, 8, 3) = µ(1, 8, 3) + y µxy(1, 10, 3) = µ(1, 10, 3)− y.

This way,

µxy(4, 9, 6) + µxy(4, 11, 6) = µ(4, 9, 6) + µ(4, 11, 6) = λ(4, 6),

and similarly for the other pair.
We find the other values of µxy using the quadrilateral rule. For instance,

applying the quadrilateral rule to the K4 corresponding to vertex 9 (blue)
gives

µxy(1, 9, 6) =
µxy(1, 9, 5)µxy(4, 9, 6)

µxy(4, 9, 5)
= µ(1, 9, 6) +

µ(1, 9, 5)

µ(4, 9, 5)
x.

Since we want µxy(1, 9, 6) + µxy(1, 10, 6) = µ(1, 9, 6) + µ(1, 6, 10), we let

µxy(1, 10, 6) = µ(1, 10, 6)− µ(1, 9, 5)

µ(4, 9, 5)
x.

5



Figure 4: Γ† after F-K transformation.

9

11

8

10
0

1

2

3

4

5

6

7

6



By a symmetrical argument, we let

µxy(3, 11, 4) = µ(3, 11, 4)− µ(3, 11, 7)

µ(4, 11, 6)
x,

µxy(3, 8, 4) = µ(3, 8, 4) +
µ(3, 11, 7)

µ(4, 11, 6)
x,

µxy(1, 8, 4) = µ(1, 8, 4) +
µ(0, 8, 4)

µ(0, 8, 3)
y,

µxy(1, 9, 4) = µ(1, 9, 4)− µ(0, 8, 4)

µ(0, 8, 3)
y,

µxy(3, 10, 6) = µ(3, 10, 6)− µ(2, 10, 6)

µ(1, 10, 2)
y,

µxy(3, 11, 6) = µ(3, 11, 6) +
µ(2, 10, 6)

µ(1, 10, 2)
y.

Finally, we determine µxy(0, 8, 1):

µxy(0, 8, 1) =
µxy(1, 8, 3)µxy(0, 8, 4)

µxy(3, 8, 4)

=
µ(0, 8, 4)(µ(1, 8, 3) + y)

µ(3, 8, 4) + µ(3,11,7)
µ(4,11,6)x

.

Then let
µxy(0, 1) = λ(0, 1)− µxy(0, 8, 1).

We determine µ(5, 9, 6) and µ(5, 6), µ(2, 10, 3) and µ(2, 3), µ(4, 11, 7) and
µ(4, 7) in a similar way.

The resulting conductivity function µxy satisfies the quadrilateral rule
at each of the four-stars, and it has the same response matrix as µ. To show
that the graph is unrecoverable, we only need to show that µxy has positive
conductances for some nonzero (x, y). For (x, y) = (0, 0), µxy is exactly µ,
so all conductances are positive there. Since µxy is a continuous function of
(x, y), all conductances will be positive in a neighborhood of (0, 0).

Since µxy satisfies the quadrilateral rule, it corresponds to a conductivity
function γxy on the original graph, which will be positive if µxy is positive,
and depends continuously on µxy. Thus, the inverse problem has a two-
parameter family of solutions in a neighborhood of the original γ. We know
we cannot add any more parameters because after we added the initial pa-
rameters x and y, all other values were determined from the quadrilateral
rule and the response matrix.

7



Conclusion

A recoverable network with unrecoverable dual is a counterexample to some
hopeful conjectures about annular networks, showing that

• A lensless medial graph does not always imply recoverability (see Fig-
ure 5).

• The medial graph, without a coloring of the cells, is insufficient to
determine recoverability.

• It is impossible in general to determine the response matrix of the dual
graph from the response matrix of the primal graph.

• In circular planar networks, two problems which are “dual” are equally
difficult, but in annular networks, one is harder than the other.

Appendix: Recovering Γ† when Two Conductances
are Known

Suppose we know the conductances of edges γ(0, 1) and γ(4, 7). Suppose we
delete these edges and update the response matrix. Then we use boundary
value problem in Figure 6 to find the conductance of the spike γ(7, 11).
Next, we use the problem in Figure 7 to find γ(0, 8). We know that we can
find a and b that will make the currents at 4 and 7 be 0 and 1 because
Λ(0, 3; 4, 7) is invertible; there is only one connection between 0, 3 and 4, 7.
We will have b negative and a positive. Once we find the current at 0 we
can find γ(0, 8).

After we contract the spikes, the conductances of the boundary edges
on the lower right can be read directly from the response matrix. Once we
delete those edges, the graph becomes circular planar and recovering the
rest of the conductances is straightforward.

Knowing how to recover the graph with two edges deleted, we can com-
pute two sets of conductances with the same response matrix. We begin by
setting all conductances to 1 and computing the response matrix. Then we
create a new Kirchhoff matrix. We set γ(0, 1) and γ(4, 7) to different val-
ues from 1. Then we use the process outlined above to “recover” the other
conductances. From the new Kirchhoff matrix, we compute a new response
matrix–which always turns out to be the same as the original response ma-
trix. However, to make the new conductances positive, we have to choose
our parameters close enough to 1.

8



Figure 5: The medial graph of Γ. Notice it is completely lensless.

9



Figure 6: Boundary value problem to find γ(7, 11).

(0) 0

1
(0)

0 (0)

(0)
0

−

1 + +

−

+

0

1+

0

0

10



Figure 7: Boundary value problem to find γ(0, 8).

b

0

0 0 (0)

0

0

0
(1)

a
0

0

−

11



The Sage code below implements this process.

#these are the parameters for the edges 0 to 1 and 4 to 7

x = 1.0

y = 1.0

#updates response matrix after deleting boundary edge

def deleteboundaryedge(L,i,j,c):

L[i,j] += c

L[j,i] += c

L[i,i] -= c

L[j,j] -= c

return L

#updates response matrix after contracting spike

def contractspike(L,i,c): #update response matrix

d = L[i,i] - c

A = L[i,:]

A[0,i] = 0

L = L - A.transpose() * A / d

L[i,:] = -c * A[0,:] / d

L[:,i] = -c * A.transpose()[:,0] / d

L[i,i] = -c * (1 + c / d)

return L

#original Kirchhoff matrix with all conductances set to 1

K = matrix(RR,

[[2,-1,0,0,0,0,0,0,-1,0,0,0],

[-1,4,0,0,0,0,0,0,-1,-1,-1,0],

[0,0,2,-1,0,0,0,0,0,0,-1,0],

[0,0,-1,4,0,0,0,0,-1,0,-1,-1],

[0,0,0,0,4,0,0,-1,-1,-1,0,-1],

[0,0,0,0,0,2,-1,0,0,-1,0,0],

[0,0,0,0,0,-1,4,0,0,-1,-1,-1],

[0,0,0,0,-1,0,0,2,0,0,0,-1],

[-1,-1,0,-1,-1,0,0,0,4,0,0,0],

[0,-1,0,0,-1,-1,-1,0,0,4,0,0],

[0,-1,-1,-1,0,0,-1,0,0,0,4,0],

[0,0,0,-1,-1,0,-1,-1,0,0,0,4]])

12



#original response matrix

L = K[0:8,0:8] - K[0:8,8:12] * K[8:12,8:12].inverse() * K[8:12,0:8]

print ’original Kirchhoff matrix\n’, K

print ’original response matrix\n’, L

#new Kirchhoff matrix to store the new values

newK = matrix(RR,12,12)

newK[0,1] = -x

newK[4,7] = -y

L = deleteboundaryedge(L,0,1,x)

L = deleteboundaryedge(L,4,7,y)

#first spike

P = -L[0:4,4:8].inverse() * L[0:4,0:4]

Q = L[4:8,0:4] + L[4:8,4:8] * P

cond = Q[3,1] / P[3,1]

newK[7,11] = -cond

print cond

L = contractspike(L,7,cond)

#second spike

S = matrix([[L[4,0],L[4,3]],[L[7,0],L[7,3]]]).inverse()

a = S[0,1]

b = S[1,1]

currentA = a * L[0,0] + b * L[0,3]

cond = currentA / a

newK[0,8] = -cond

L = contractspike(L,0,cond)

#boundary edges

newK[4,11] = L[4,7]

L = deleteboundaryedge(L,4,7,-L[4,7])

newK[3,8] = L[0,3]

L = deleteboundaryedge(L,0,3,-L[0,3])

13



newK[3,11] = L[3,7]

L = deleteboundaryedge(L,3,7,-L[3,7])

newK[6,11] = L[6,7]

L = deleteboundaryedge(L,6,7,-L[6,7])

newK[4,8] = L[0,4]

L = deleteboundaryedge(L,0,4,-L[0,4])

newK[1,8] = L[0,1]

L = deleteboundaryedge(L,0,1,-L[0,1])

#third spike

a = -L[4,5] / L[1,5]

cond = a * L[1,4] + L[4,4]

newK[4,9] = -cond

L = contractspike(L,4,cond)

#more boundary edges

newK[1,9] = L[1,4]

L = deleteboundaryedge(L,1,4,-L[1,4])

newK[5,9] = L[4,5]

L = deleteboundaryedge(L,4,5,-L[4,5])

newK[6,9] = L[4,6]

L = deleteboundaryedge(L,4,6,-L[4,6])

newK[5,6] = L[5,6]

L = deleteboundaryedge(L,5,6,-L[5,6])

#fourth spike

a = -L[1,6] / L[2,6]

cond = a * L[1,2] + L[1,1]

newK[1,10] = -cond

L = contractspike(L,1,cond)

#last boundary edges

newK[2,10] = L[1,2]

newK[3,10] = L[1,3]

14



newK[6,10] = L[1,6]

newK[2,3] = L[2,3]

#fill in newK below the diagonal

n = len(newK.column(0))

for i in range(n):

for j in range(i):

newK[i,j] = newK[j,i]

for i in range(n):

sum = 0

for j in range(n):

sum += newK[i,j]

newK[i,i] = -sum

#compute new response matrix

newL = newK[0:8,0:8]

- newK[0:8,8:12] * newK[8:12,8:12].inverse() * newK[8:12,0:8]

print ’new Kirchhoff matrix\n’, newK

print ’new response matrix\n’, newL

References

[1] Edward B. Curtis and James A. Morrow. Inverse Problems for Electrical
Networks. World Scientific. 2000.

[2] Jeff Russell. “F and K Solve the Inverse Problem.”

15


